Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 4, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38071695

RESUMO

In recent years, strategic plans for poultry production have emphasized quantitative traits, particularly body weight and carcass traits (meat yield), in response to overpopulation challenges. Candidate genes such as adenylosuccinate lyase (ADSL), melanocortin-4-receptor (MC4R), and calpain 1 (CAPN1) have played vital roles in this context due to their associations with muscle growth and body composition. This study aims to investigate the influence of polymorphisms and gene expressions of the aforementioned genes on body weight (BW), growth rate (GR), breast weight (BrW), and thigh weight (TW) across four distinct chicken breeds: Fayoumi, Matrouh, Mamourah, and Leghorn. The use of PCR-SSCP analysis revealed genetic polymorphisms through the identification of various patterns (genotypes) within the three examined genes. The ADSL, MC4R, and CAPN1 genes exhibited five, three, and two different genotypes, respectively. These polymorphisms displayed promising connections with enhancing economically significant production traits, particularly BW, BrW and TW. Furthermore, gene expression analyses were conducted on breast and thigh tissues obtained from the chicken breeds at 60 days of age, where ADSL and MC4R exhibited a noteworthy up-regulation in Fayoumi and Matrouh breeds, and down-regulation in Mamourah and Leghorn. In contrast, CAPN1 expression decreased across most breeds with a slight increase noted in Fayoumi breed. In conclusion, this investigation underscores the substantial impact of ADSL, MC4R, and CAPN1 genes on economically important production traits within Egyptian domestic chicken breeds. Consequently, these genes emerge as significant molecular markers, holding potential utility in avian selection and breeding programs aimed at enhancing productive performance.


Assuntos
Adenilossuccinato Liase , Galinhas , Animais , Galinhas/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Egito , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Carne , Peso Corporal
2.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 11): 278-284, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873935

RESUMO

Adenylosuccinate lyase (PurB) catalyzes two distinct reactions in the purine nucleotide biosynthetic pathway using the same active site. The ability to recognize two different sets of substrates is of structural and evolutionary interest. In the present study, the crystal structure of PurB from the thermophilic bacterium Thermus thermophilus HB8 (TtPurB) was determined at a resolution of 2.38 Šby molecular replacement using a structure predicted by AlphaFold2 as a template. The asymmetric unit of the TtPurB crystal contained two TtPurB molecules, and some regions were disordered in the crystal structure. The disordered regions were the substrate-binding site and domain 3. TtPurB forms a homotetramer and the monomer is composed of three domains (domains 1, 2 and 3), which is a typical structure for the aspartase/fumarase superfamily. Molecular dynamics simulations with and without substrate/product were performed using a full-length model of TtPurB which was obtained before deletion of the disordered regions. The substrates and products were bound to the model structures during the MD simulations. The fluctuations of amino-acid residues were greater in the disordered regions and became smaller upon the binding of substrate or product. These results demonstrate that the full-length model obtained using AlphaFold2 can be used to generate the coordinates of disordered regions within the crystal structure.


Assuntos
Adenilossuccinato Liase , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Thermus thermophilus , Homologia de Sequência de Aminoácidos , Cristalografia por Raios X
3.
PLoS Genet ; 19(9): e1010974, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37773959

RESUMO

Adenylosuccinate lyase deficiency is an ultrarare congenital metabolic disorder associated with muscle weakness and neurobehavioral dysfunction. Adenylosuccinate lyase is required for de novo purine biosynthesis, acting twice in the pathway at non-sequential steps. Genetic models can contribute to our understanding of the etiology of disease phenotypes and pave the way for development of therapeutic treatments. Here, we establish the first model to specifically study neurobehavioral aspects of adenylosuccinate lyase deficiency. We show that reduction of adsl-1 function in C. elegans is associated with a novel learning phenotype in a gustatory plasticity assay. The animals maintain capacity for gustatory plasticity, evidenced by a change in their behavior in response to cue pairing. However, their behavioral output is distinct from that of control animals. We link substrate accumulation that occurs upon adsl-1 deficiency to an unexpected perturbation in tyrosine metabolism and show that a lack of tyramine mediates the behavioral changes through action on the metabotropic TYRA-2 tyramine receptor. Our studies reveal a potential for wider metabolic perturbations, beyond biosynthesis of purines, to impact behavior under conditions of adenylosuccinate lyase deficiency.


Assuntos
Adenilossuccinato Liase , Adenilossuccinato Liase/deficiência , Transtorno Autístico , Proteínas de Caenorhabditis elegans , Erros Inatos do Metabolismo da Purina-Pirimidina , Receptores de Amina Biogênica , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Proteínas de Caenorhabditis elegans/genética
4.
Mol Genet Metab ; 140(3): 107686, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37607437

RESUMO

Inborn errors of purine metabolism are rare syndromes with an array of complex phenotypes in humans. One such disorder, adenylosuccinate lyase deficiency (ASLD), is caused by a decrease in the activity of the bi-functional purine biosynthetic enzyme adenylosuccinate lyase (ADSL). Mutations in human ADSL cause epilepsy, muscle ataxia, and autistic-like symptoms. Although the genetic basis of ASLD is known, the molecular mechanisms driving phenotypic outcome are not. Here, we characterize neuromuscular and reproductive phenotypes associated with a deficiency of adsl-1 in Caenorhabditis elegans. We demonstrate that adsl-1 function contributes to regulation of spontaneous locomotion, that adsl-1 functions acutely for proper mobility, and that aspects of adsl-1-related dysfunction are reversible. Using pharmacological supplementation, we correlate phenotypes with distinct metabolic perturbations. The neuromuscular defect correlates with accumulation of a purine biosynthetic intermediate whereas reproductive deficiencies can be ameliorated by purine supplementation, indicating differing molecular mechanisms behind the phenotypes. Because purine metabolism is highly conserved in metazoans, we suggest that similar separable metabolic perturbations result in the varied symptoms in the human disorder and that a dual-approach therapeutic strategy may be beneficial.


Assuntos
Adenilossuccinato Liase , Transtorno Autístico , Erros Inatos do Metabolismo da Purina-Pirimidina , Animais , Humanos , Transtorno Autístico/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Fenótipo , Purinas
5.
Cancer Gene Ther ; 29(12): 1878-1894, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35840668

RESUMO

In EGFR-mutant lung cancer, drug-tolerant persister cells (DTPCs) show prolonged survival when receiving EGFR tyrosine kinase inhibitor (TKI) treatments. They are a likely source of drug resistance, but little is known about how these cells tolerate drugs. Ribonucleic acids (RNAs) molecules control cell growth and stress responses. Nucleic acid metabolism provides metabolites, such as purines, supporting RNA synthesis and downstream functions. Recently, noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), have received attention due to their capacity to repress gene expression via inhibitory binding to downstream messenger RNAs (mRNAs). Here, our study links miRNA expression to purine metabolism and drug tolerance. MiR-21-5p (guide strand) is a commonly upregulated miRNA in disease states, including cancer and drug resistance. However, the expression and function of miR-21-3p (passenger strand) are not well understood. We found that upregulation of miR-21-5p and miR-21-3p tune purine metabolism leading to increased drug tolerance. Metabolomics data demonstrated that purine metabolism was the top pathway in the DTPCs compared with the parental cells. The changes in purine metabolites in the DTPCs were partially rescued by targeting miR-21. Analysis of protein levels in the DTPCs showed that reduced expression of adenylosuccinate lyase (ADSL) was reversed after the miR-21 knockdown. ADSL is an essential enzyme in the de novo purine biosynthesis pathway by converting succino-5-aminoimidazole-4-carboxamide riboside (succino-AICAR or SAICAR) to AICAR (or acadesine) as well as adenylosuccinate to adenosine monophosphate (AMP). In the DTPCs, miR-21-5p and miR-21-3p repress ADSL expression. The levels of top decreased metabolite in the DTPCs, AICAR was reversed when miR-21 was blocked. AICAR induced oxidative stress, evidenced by increased reactive oxygen species (ROS) and reduced expression of nuclear factor erythroid-2-related factor 2 (NRF2). Concurrently, miR-21 knockdown induced ROS generation. Therapeutically, a combination of AICAR and osimertinib increased ROS levels and decreased osimertinib-induced NRF2 expression. In a MIR21 knockout mouse model, MIR21 loss-of-function led to increased purine metabolites but reduced ROS scavenging capacity in lung tissues in physiological conditions. Our data has established a link between ncRNAs, purine metabolism, and the redox imbalance pathway. This discovery will increase knowledge of the complexity of the regulatory RNA network and potentially enable novel therapeutic options for drug-resistant patients.


Assuntos
Adenilossuccinato Liase , MicroRNAs , Camundongos , Animais , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , MicroRNAs/genética , Purinas , RNA Mensageiro/química , Receptores ErbB/genética
6.
Elife ; 112022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35133277

RESUMO

Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL-deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.


Assuntos
Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/metabolismo , Transtorno Autístico/metabolismo , Neurogênese , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Galinhas/metabolismo , Ciliopatias/metabolismo , Dano ao DNA , Humanos , Microcefalia/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fenótipo , Fosfoproteínas/metabolismo , Purinas/metabolismo , Ribonucleotídeos/metabolismo , Peixe-Zebra/metabolismo
7.
Mol Genet Metab ; 136(3): 190-198, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998670

RESUMO

Purines are essential molecules that are components of vital biomolecules, such as nucleic acids, coenzymes, signaling molecules, as well as energy transfer molecules. The de novo biosynthesis pathway starts from phosphoribosylpyrophosphate (PRPP) and eventually leads to the synthesis of inosine monophosphate (IMP) by means of 10 sequential steps catalyzed by six different enzymes, three of which are bi-or tri-functional in nature. IMP is then converted into guanosine monophosphate (GMP) or adenosine monophosphate (AMP), which are further phosphorylated into nucleoside di- or tri-phosphates, such as GDP, GTP, ADP and ATP. This review provides an overview of inborn errors of metabolism pertaining to purine synthesis in humans, including either phosphoribosylpyrophosphate synthetase (PRS) overactivity or deficiency, as well as adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), and adenylosuccinate synthetase (ADSS) deficiencies. ITPase deficiency is being described as well. The clinical spectrum of these disorders is broad, including neurological impairment, such as psychomotor retardation, epilepsy, hypotonia, or microcephaly; sensory involvement, such as deafness and visual disturbances; multiple malformations, as well as muscle presentations or consequences of hyperuricemia, such as gouty arthritis or kidney stones. Clinical signs are often nonspecific and, thus, overlooked. It is to be hoped that this is likely to be gradually overcome by using sensitive biochemical investigations and next-generation sequencing technologies.


Assuntos
Adenilossuccinato Liase , Erros Inatos do Metabolismo da Purina-Pirimidina , Adenilossuccinato Liase/deficiência , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Transtorno Autístico , Humanos , Inosina Monofosfato , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/metabolismo , Purinas
8.
Science ; 372(6541): 512-516, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926954

RESUMO

DNA modifications vary in form and function but generally do not alter Watson-Crick base pairing. Diaminopurine (Z) is an exception because it completely replaces adenine and forms three hydrogen bonds with thymine in cyanophage S-2L genomic DNA. However, the biosynthesis, prevalence, and importance of Z genomes remain unexplored. Here, we report a multienzyme system that supports Z-genome synthesis. We identified dozens of globally widespread phages harboring such enzymes, and we further verified the Z genome in one of these phages, Acinetobacter phage SH-Ab 15497, by using liquid chromatography with ultraviolet and mass spectrometry. The Z genome endows phages with evolutionary advantages for evading the attack of host restriction enzymes, and the characterization of its biosynthetic pathway enables Z-DNA production on a large scale for a diverse range of applications.


Assuntos
2-Aminopurina/metabolismo , Adenilossuccinato Sintase/química , Bacteriófagos/química , Bacteriófagos/enzimologia , DNA Viral/química , DNA Forma Z/química , Proteínas não Estruturais Virais/química , 2-Aminopurina/química , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Bacteriófagos/genética , Pareamento de Bases , Vias Biossintéticas , DNA Viral/biossíntese , DNA Viral/genética , DNA Forma Z/biossíntese , DNA Forma Z/genética , Genoma Viral , Ligação de Hidrogênio , Domínios Proteicos , Especificidade por Substrato , Timina/química , Timina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
9.
J Recept Signal Transduct Res ; 41(6): 566-573, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33073638

RESUMO

The dreadful disease malaria is one among the infectious diseases that comes in third number after the tuberculosis and HIV. This disease is spread by female Anopheles mosquito and caused by the malarial parasite sp notably Plasmodium falciparum. In this, the organism has several enzymes for processing the infection and growth mechanism and among that, the adenylosuccinate lyase is an enzyme that plays a critical role in metabolism and cellular replication via its action in the de novo purine biosynthetic pathway. Adenylosuccinate has been studied for two reaction mechanisms, and in that, the adenylosuccinate to AMP and fumarate is core important. As of now, there have been several studies indicating the reaction mechanism of adenylosuccinate lyase, this study projects the conformations of the reactant and product changes through molecular docking and molecular dynamic simulations. Adenylosuccinate bound complex involves His role in the product than the reactant complex, and the complex shows high flexibility due to fumarate. Thus, identifying the core inhibitor that binds to His rings could be a standard adenylosuccinate lyase inhibitor, that can block the malarial diseases in humans. In addition to the competitive inhibition site, we also predicted the uncompetitive ligand binding site, which suggest the alternate region to be targeted. Thus, from this work, we suggest both competitive and uncompetitive binding regions for the purpose identifying the malarial inhibitors.


Assuntos
Adenilossuccinato Liase/química , Malária Falciparum/parasitologia , Simulação de Dinâmica Molecular , Plasmodium falciparum/enzimologia , Receptores de Superfície Celular/metabolismo , Adenilossuccinato Liase/metabolismo , Animais , Feminino , Malária Falciparum/metabolismo , Conformação Proteica
10.
Hepatology ; 74(1): 233-247, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33336367

RESUMO

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is among the most common cancer types worldwide, yet patients with HCC have limited treatment options. There is an urgent need to identify drug targets that specifically inhibit the growth of HCC cells. APPROACH AND RESULTS: We used a CRISPR library targeting ~2,000 druggable genes to perform a high-throughput screen and identified adenylosuccinate lyase (ADSL), a key enzyme involved in the de novo purine synthesis pathway, as a potential drug target for HCC. ADSL has been implicated as a potential oncogenic driver in some cancers, but its role in liver cancer progression remains unknown. CRISPR-mediated knockout of ADSL impaired colony formation of liver cancer cells by affecting AMP production. In the absence of ADSL, the growth of liver tumors is retarded in vivo. Mechanistically, we found that ADSL knockout caused S-phase cell cycle arrest not by inducing DNA damage but by impairing mitochondrial function. Using data from patients with HCC, we also revealed that high ADSL expression occurs during tumorigenesis and is linked to poor survival rate. CONCLUSIONS: Our findings uncover the role of ADSL-mediated de novo purine synthesis in fueling mitochondrial ATP production to promote liver cancer cell growth. Targeting ADSL may be a therapeutic approach for patients with HCC.


Assuntos
Adenilossuccinato Liase/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Purinas/biossíntese , Trifosfato de Adenosina/biossíntese , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Taxa de Sobrevida
11.
Nat Commun ; 10(1): 5177, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729379

RESUMO

Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.


Assuntos
Adenilossuccinato Liase/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Adenosina/metabolismo , Adenilossuccinato Liase/genética , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/fisiopatologia
12.
Poult Sci ; 98(10): 4327-4337, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111951

RESUMO

Consumer preference for slow-growing broiler chickens is rising because of increased demand for high-quality poultry products. Korat chicken (KRC) is a slow-growing chicken generated in Thailand. A goal of the KRC breeding program is to produce meat with a low purine content to benefit an aging population, without interfering with growth performance. Thus, this study aimed to investigate the effects of genes encoding melanocortin 4 receptor (MC4R), calpain 1 (CAPN1), and adenylosuccinate lyase (ADSL) on body weight, muscle fiber, and content of purine and its derivatives (i.e., adenine, guanine, hypoxanthine, and xanthine), to develop molecular markers for breeding programs. Genotypes of MC4R, CAPN1, and ADSL were obtained from 583 KRCs by PCR-single-strand conformation polymorphism. The body weight and purine contents of the KRCs were measured every 2 wk until the KRCs reached market weight at 10 wk of age. A significant association between the MC4R genotype and body weight at 2, 4, and 10 wk of age was detected. KRC possessing the BB genotype of CAPN1 showed significantly heavier body weight at 6 wk of age and guanine content at 4 wk of age, and a smaller muscle fiber diameter in the breast muscle at 10 wk of age, compared with those of the other genotypes. In addition, high expression levels of the CAPN1 and ADSL genes were detected in the breast muscle at 2 wk of age. Although higher purine contents were detected at a young age, no significant associations with the MC4R, CAPN1, and ADSL genes were detected. Our results indicate that MC4R and CAPN1 could be used as genetic markers for growth and meat quality in the slow-growing chicken breeding program.


Assuntos
Proteínas Aviárias/genética , Peso Corporal/genética , Galinhas/fisiologia , Purinas/metabolismo , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Animais , Proteínas Aviárias/metabolismo , Calpaína/genética , Calpaína/metabolismo , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Feminino , Marcadores Genéticos , Genótipo , Masculino , Carne/análise , Polimorfismo Conformacional de Fita Simples , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
13.
J Proteome Res ; 18(5): 2078-2087, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30964683

RESUMO

Purines represent a class of essential metabolites produced by the cell to maintain cellular homeostasis and facilitate cell proliferation. In times of high purine demand, the de novo purine biosynthetic pathway is activated; however, the mechanisms that facilitate this process are largely unknown. One plausible mechanism is through intracellular signaling, which results in enzymes within the pathway becoming post-translationally modified to enhance their individual enzyme activities and the overall pathway metabolic flux. Here, we employ a proteomic strategy to investigate the extent to which de novo purine biosynthetic pathway enzymes are post-translationally modified in 293T cells. We identified 7 post-translational modifications on 135 residues across the 6 human pathway enzymes. We further asked whether there were differences in the post-translational modification state of each pathway enzyme isolated from cells cultured in the presence or absence of purines. Of the 174 assigned modifications, 67% of them were only detected in one experimental growth condition in which a significant number of serine and threonine phosphorylations were noted. A survey of the most-probable kinases responsible for these phosphorylation events uncovered a likely AKT phosphorylation site at residue Thr397 of PPAT, which was only detected in cells under purine-supplemented growth conditions. These data suggest that this modification might alter enzyme activity or modulate its interaction(s) with downstream pathway enzymes. Together, these findings propose a role for post-translational modifications in pathway regulation and activation to meet intracellular purine demand.


Assuntos
Amidofosforribosiltransferase/metabolismo , Mapeamento de Peptídeos/métodos , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/metabolismo , Acetilação , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Amidofosforribosiltransferase/genética , Sequência de Aminoácidos , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Peptídeos/síntese química , Peptídeos/metabolismo , Fosforribosilglicinamido Formiltransferase/genética , Fosforribosilglicinamido Formiltransferase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo , Ubiquitinação
14.
Chem Biol Drug Des ; 93(6): 1050-1060, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30891955

RESUMO

Visceral leishmaniasis affects millions of people worldwide in areas where Leishmania donovani is endemic. The protozoan species serves a greater threat as it has gradually evolved drug resistance whereby requiring newer approaches to treat the infection. State-of-art techniques are mostly directed toward finding better targets extracted from the available proteome data. In light of recent computational advancements, we ascertain and validate one such target, adenylosuccinate lyase (ADSL) by implementation of in-silico methods which led to the identification of critical amino acid residues that affects its functional attributes. Our target selection was based on comprehensive topological analysis of a knowledge-based protein-protein interaction network. Subsequently, mutations were incorporated and the dynamic behavior of mutated and native proteins was traced using MD simulations for a total time span of 600 ns. Comparative analysis of the native and mutated structures exhibited perceptible changes in the ligand-bound catalytic region with respect to time. The unfavorable changes in the orientations of specific catalytic residues, His118 and His196, induced by generated mutations reduce the enzyme specificity. In summary, this integrative approach is able to select a target against pathogen, identify crucial residues, and challenge its functionality through the selected mutations.


Assuntos
Adenilossuccinato Liase/metabolismo , Leishmaniose Visceral/enzimologia , Simulação de Dinâmica Molecular , Mutação , Biologia de Sistemas , Animais , Leishmania donovani/patogenicidade , Leishmaniose Visceral/parasitologia , Ligação Proteica
15.
Genetics ; 211(4): 1297-1313, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700528

RESUMO

Purine homeostasis is ensured through a metabolic network widely conserved from prokaryotes to humans. Purines can either be synthesized de novo, reused, or produced by interconversion of extant metabolites using the so-called recycling pathway. Although thoroughly characterized in microorganisms, such as yeast or bacteria, little is known about regulation of the purine biosynthesis network in metazoans. In humans, several diseases are linked to purine metabolism through as yet poorly understood etiologies. Particularly, the deficiency in adenylosuccinate lyase (ADSL)-an enzyme involved both in the purine de novo and recycling pathways-causes severe muscular and neuronal symptoms. In order to address the mechanisms underlying this deficiency, we established Caenorhabditis elegans as a metazoan model organism to study purine metabolism, while focusing on ADSL. We show that the purine biosynthesis network is functionally conserved in C. elegans Moreover, adsl-1 (the gene encoding ADSL in C. elegans) is required for developmental timing, germline stem cell maintenance and muscle integrity. Importantly, these traits are not affected when solely the de novo pathway is abolished, and we present evidence that germline maintenance is linked specifically to ADSL activity in the recycling pathway. Hence, our results allow developmental and tissue specific phenotypes to be ascribed to separable steps of the purine metabolic network in an animal model.


Assuntos
Adenilossuccinato Liase/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Homeostase , Músculo Esquelético/metabolismo , Purinas/metabolismo , Adenilossuccinato Liase/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/citologia
16.
Lab Invest ; 98(4): 449-461, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29467457

RESUMO

Adenylosuccinate lyase (ADSL) is an enzyme that plays important roles in de novo purine synthesis. Although ADSL was reported to be upregulated in various malignancies, such as colorectal, breast, and prostate cancer, as well as gliomas, the mechanism by which elevated ADSL expression contributes to cancer has not been elucidated. We previously performed a shotgun proteomics analysis to characterize specific proteins associated with the properties of the aldehyde dehydrogenase (ALDH)-high cell population, which was reported to be involved in tumorigenic potential, and showed that ADSL expression is upregulated in the ALDH-high population of endometrial cancer. Here, we showed that ADSL is involved in endometrial cancer aggressiveness by regulating expression of killer cell lectin-like receptor C3 (KLRC3), which is a receptor expressed on natural killer cells. Immunohistochemical analysis indicated that ADSL expression increased as endometrioid carcinoma specimens became more poorly differentiated and higher degree of primary tumor progression. Knockdown of ADSL in endometrial cancer cells decreased cell proliferation, migration, and invasive capability, and caused the cells to adopt a more rounded shape. DNA microarray analysis and quantitative real-time PCR showed that KLRC3 expression was decreased in ADSL knockdown cells. Knockdown of KLRC3 in endometrial cancer cells resulted in the same phenotype as knockdown of ADSL. Moreover, fumarate, which could be produced by ADSL and was recently shown to be an oncometabolite, recovered KLRC3 expression in ADSL knockdown cells, suggesting that fumarate produced by ADSL could regulate KLRC3 expression. Our findings indicate that ADSL enhances cell proliferation, migration, and invasive capability through regulation of KLRC3 expression by fumarate.


Assuntos
Adenocarcinoma/enzimologia , Adenilossuccinato Liase/metabolismo , Neoplasias do Endométrio/enzimologia , Fumaratos/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Invasividade Neoplásica
17.
Infect Immun ; 85(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28808156

RESUMO

Staphylococcus aureus is a human commensal but also has devastating potential as an opportunistic pathogen. S. aureus bacteremia is often associated with an adverse outcome. To identify potential targets for novel control approaches, we have identified S. aureus components that are required for growth in human blood. An ordered transposon mutant library was screened, and 9 genes involved specifically in hemolysis or growth on human blood agar were identified by comparing the mutants to the parental strain. Three genes (purA, purB, and pabA) were subsequently found to be required for pathogenesis in the zebrafish embryo infection model. The pabA growth defect was specific to the red blood cell component of human blood, showing no difference from the parental strain in growth in human serum, human plasma, or sheep or horse blood. PabA is required in the tetrahydrofolate (THF) biosynthesis pathway. The pabA growth defect was found to be due to a combination of loss of THF-dependent dTMP production by the ThyA enzyme and increased demand for pyrimidines in human blood. Our work highlights pabA and the pyrimidine salvage pathway as potential targets for novel therapeutics and suggests a previously undefined role for a human blood factor in the activity of sulfonamide antibiotics.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Fatores de Virulência/genética , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Adenilossuccinato Sintase/genética , Adenilossuccinato Sintase/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Células Sanguíneas/microbiologia , Meios de Cultura/química , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Embrião não Mamífero , Cavalos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ovinos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/mortalidade , Staphylococcus aureus/metabolismo , Análise de Sobrevida , Virulência , Fatores de Virulência/metabolismo , Peixe-Zebra
18.
J Biol Chem ; 292(28): 11829-11839, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28559277

RESUMO

There is significant clinical need for new antifungal agents to manage infections with pathogenic species such as Cryptococcus neoformans Because the purine biosynthesis pathway is essential for many metabolic processes, such as synthesis of DNA and RNA and energy generation, it may represent a potential target for developing new antifungals. Within this pathway, the bifunctional enzyme adenylosuccinate (ADS) lyase plays a role in the formation of the key intermediates inosine monophosphate and AMP involved in the synthesis of ATP and GTP, prompting us to investigate ADS lyase in C. neoformans. Here, we report that ADE13 encodes ADS lyase in C. neoformans. We found that an ade13Δ mutant is an adenine auxotroph and is unable to successfully cause infections in a murine model of virulence. Plate assays revealed that production of a number of virulence factors essential for dissemination and survival of C. neoformans in a host environment was compromised even with the addition of exogenous adenine. Purified recombinant C. neoformans ADS lyase shows catalytic activity similar to its human counterpart, and its crystal structure, the first fungal ADS lyase structure determined, shows a high degree of structural similarity to that of human ADS lyase. Two potentially important amino acid differences are identified in the C. neoformans crystal structure, in particular a threonine residue that may serve as an additional point of binding for a fungal enzyme-specific inhibitor. Besides serving as an antimicrobial target, C. neoformans ADS lyase inhibitors may also serve as potential therapeutics for metabolic disease; rather than disrupt ADS lyase, compounds that improve the stability the enzyme may be used to treat ADS lyase deficiency disease.


Assuntos
Adenilossuccinato Liase/antagonistas & inibidores , Antifúngicos/farmacologia , Cryptococcus neoformans/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Modelos Moleculares , Adenilossuccinato Liase/química , Adenilossuccinato Liase/genética , Adenilossuccinato Liase/metabolismo , Sequência de Aminoácidos , Animais , Antifúngicos/química , Antifúngicos/uso terapêutico , Sítios de Ligação , Criptococose/tratamento farmacológico , Criptococose/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Feminino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Camundongos Endogâmicos BALB C , Conformação Molecular , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Análise de Sobrevida , Virulência/efeitos dos fármacos
19.
Mol Biochem Parasitol ; 214: 27-35, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28347672

RESUMO

Schistosoma mansoni is the parasite responsible for schistosomiasis, a disease that affects about 218 million people worldwide. Currently, both direct treatment and disease control initiatives rely on chemotherapy using a single drug, praziquantel. Concerns over the possibility of resistance developing to praziquantel, have stimulated efforts to develop new drugs for the treatment of schistosomiasis. Schistosomes do not have the de novo purine biosynthetic pathway, and instead depend entirely on the purine salvage pathway to supply its need for purines. The purine salvage pathway has been reported as a potential target for developing new drugs against schistosomiasis. Adenylosuccinate lyase (SmADSL) is an enzyme in this pathway, which cleaves adenylosuccinate (ADS) into adenosine 5'-monophosphate (AMP) and fumarate. SmADSL kinetic characterization was performed by isothermal titration calorimetry (ITC) using both ADS and SAICAR as substrates. Structures of SmADSL in Apo form and in complex with AMP were elucidated by x-ray crystallography revealing a highly conserved tetrameric structure required for their function since the active sites are formed from residues of three different subunits. The active sites are also highly conserved between species and it is difficult to identify a potent species-specific inhibitor for the development of new therapeutic agents. In contrast, several mutagenesis studies have demonstrated the importance of dimeric interface residues in the stability of the quaternary structure of the enzyme. The lower conservation of these residues between SmADSL and human ADSL could be used to lead the development of anti-schistosomiasis drugs based on disruption of subunit interfaces. These structures and kinetics data add another layer of information to Schistosoma mansoni purine salvage pathway.


Assuntos
Adenilossuccinato Liase/química , Adenilossuccinato Liase/metabolismo , Schistosoma mansoni/enzimologia , Monofosfato de Adenosina/metabolismo , Adenilossuccinato Liase/genética , Animais , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Fumaratos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
20.
World J Microbiol Biotechnol ; 33(2): 30, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28058639

RESUMO

The selection of efficient promoter is usually very crucial for gene expression and metabolic engineering in Streptomycetes. In this study, the synthetic promoters SPL-57and SPL-21, and the engineered promoter kasOp*were selected and their activities were examined by using a reporter gene assay based on GUS. All selected promoters which have been reported to be stronger than promoter permE*, which was used as control promoter. As host we were choosing S. diastatochromogenes 1628, the producer of toyocamycin (TM). Our results indicate that all tested promoters can be used to express genes in S. diastatochromogenes 1628. Interesting, promoter SPL-21 showed the strongest transcriptional and expression level and gave rise to a 5.2-fold increase in GUS activity compared with control. In order to improve TM production, the promoters were used to control expression of toyF. This gene encodes an adenylosuccinate lyase involved in TM biosynthesis. Among all different recombinant strains, the strain 1628-21F, in which over-expression of toyF gene was driven by SPL-21, exhibited the largest increase in TOYF activity and TM production. In a 5-l fermenter this strain produced more than two times more TM compared with the wild-type strain.


Assuntos
Adenilossuccinato Liase/metabolismo , Regiões Promotoras Genéticas , Streptomyces/genética , Toiocamicina/biossíntese , Adenilossuccinato Liase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Fermentação , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Engenharia Metabólica , Streptomyces/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...